On the Imitation Strategy for Games on Graphs

نویسندگان

  • Colin Cooper
  • Martin E. Dyer
  • Velumailum Mohanaraj
چکیده

In evolutionary game theory, repeated two-player games are used to study strategy evolution in a population under natural selection. As the evolution greatly depends on the interaction structure, there has been growing interests in studying the games on graphs. In this setting, players occupy the vertices of a graph and play the game only with their immediate neighbours. Various evolutionary dynamics have been studied in this setting for different games. Due to the complexity of the analysis, however, most of the work in this area is experimental. This paper aims to contribute to a more complete understanding, by providing rigorous analysis. We study the imitation dynamics on two classes of graph: cycles and complete graphs. We focus on three well known social dilemmas, namely the Prisoner’s Dilemma, the Stag Hunt and the Snowdrift Game. We also consider, for completeness, the so-called Harmony Game. Our analysis shows that, on the cycle, all four games converge fast, either to total cooperation or total defection. On the complete graph, all but the Snowdrift game converge fast, either to cooperation or defection. The Snowdrift game reaches a metastable state fast, where cooperators and defectors coexist. It will converge to cooperation or defection only after spending time in this state which is exponential in the size, n, of the graph. In exceptional cases, it will remain in this state indefinitely. Our theoretical results are supported by experimental investigations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imitation in Large Games

In games with a large number of players where players may have overlapping objectives, the analysis of stable outcomes typically depends on player types. A special case is when a large part of the player population consists of imitation types: that of players who imitate choice of other (optimizing) types. Game theorists typically study the evolution of such games in dynamical systems with imit...

متن کامل

Evolutionary stability on graphs.

Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs...

متن کامل

Nash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs

In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...

متن کامل

Unbeatable Imitation Jörg Oechssler ‡

We show that for many classes of symmetric two-player games, the simple decision rule “imitate-if-better” can hardly be beaten by any strategy. We provide necessary and sufficient conditions for imitation to be unbeatable in the sense that there is no strategy that can exploit imitation as a money pump. In particular, imitation is subject to a money pump if and only if the relative payoff funct...

متن کامل

Aspiration dynamics of multi-player games in finite populations.

On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1102.3879  شماره 

صفحات  -

تاریخ انتشار 2010